代数学III（2024） 第8.5講推敲中20240707
・・・このversionで学期末の区切りをつけるべく推敲中。
定義（可約と既約）
体Kに係数を持つ（K係数）n次多項式f(x)が、n－1次以下のK係数多項式g(x)とh(x)の積で表されるとき（即ちf(x) = g(x)・h(x) と分解できるとき）、f(x)はK上可約な多項式と言う。
f(x)がK上可約でないとき（即ちこれ以上因数分解できないとき）K上既約であるという。
Gaussの定理
　f(x) ℤ[x] とする。f(x) がℤ上既約ならば、f(x)はℚ上既約である。　（証明略）

問　以下のℤ係数多項式を、ℚ上,ℝ上,ℂ上で因数分解せよ。
[bookmark: _Hlk138514043](1) 2x²+3x－5
(2) x²+3x+1
(3) x²－x +1
(4) x³－1
(5) x³－2
(6) x⁴+1

定義（代数的数と最小多項式）
ℂ：複素数体
Kを複素数体ℂの部分体とする。（読みづらければ、Kを有理数体ℚとして読んでください。）
複素数α∊Cについて（0多項式以外の）K係数多項式f(x)がありf(α)=0となるとき、αはK上代数的数であると言う。
K上代数的数αに対しf(α)=0となる（0多項式以外の）K係数多項式f(x)のうち次数が最小で、最高次の項の係数が1のものを、αのK上最小多項式という。

例　はℚ上代数的数であり、そのℚ上最小多項式はx²-5である。
　　2+3iはℚ上代数的数であり、そのℚ上最小多項式はx²－4x＋13である。

定理　K上代数的数α∊ℂ に対し, αのK上最小多項式f(x)は既約である。また、K上最小多項式f(x)は、ただ一つ存在する。
証明（：暇だったら読んでみてください。)　　f(x)をn次式とする。
f(x)がK上可約（：既約でないこと）だとすると、n－1次以下のK係数多項式g(x)とh(x)によりf(x) = g(x)・h(x) と分解できる。f(α)＝０より、g(α)・h(α)=0、即ちg(α)=0またはh(α)=0となる。これはαのK上最小多項式f(x)の次数最小性に矛盾する。よってf(x)は既約である。
[bookmark: _Hlk135578223][bookmark: _Hlk135578304]αのK上最小多項式がf₁(x), f₂(x)の異なる2つあると仮定する。
f₁(x), f₂(x)はともに（x=αを代入して0となるもののうち）（次数が）最小（な）多項式なので次数nは等しく、f₁(x)－f₂(x)は次数がn未満（：n次の項は、係数が1－1＝0になり消えるので）であるが0多項式ではない。F(x)= f₁(x)－f₂(x)とおく。
F(x) は n 次未満で、F(α) = f₁(α)－f₂(α) ＝ 0となる。 これは、f₁(x), f₂(x)がαのK上最小多項式であることに矛盾する。故に、K上最小多項式は唯一である。   （証明終）

定理　K上代数的数α∊ℂ に対し, f(x)がαのK上最小多項式だとする。
g(x)がg(α) = 0となるK係数多項式であるならば、g(x)はf(x)で割り切れる。
証明（：暇だったら読んでみてください。)　g(x)をf(x)で割り、そのときの商をq(x)、余りをr(x)とする。
するとg(x)=f(x)q(x)+r(x)（r(x)の次数はf(x)の次数未満）
　x=αを代入すると、g(α)=f(α)q(α)+ r(α)
                      0  = 0・q(α) + r(α)
  従ってr(α)=0
ここで、もしr(x)が0多項式でなければ、r(x)はx=αを代入して0になるf(x)より次数の低い（0多項式以外の）多項式となり、f(x)の次数最小性に矛盾する。よって、r(x)=０(恒等式)である。すなわち、g(x)はf(x)で割り切れる。　　　　　　　　　　　　　（証明終）

例　ω= とする。これは,x³=1の虚数解の１つである。
ω∈ ℂ の最小多項式はx²＋x＋1 である。
{x³-1}|x=ω=0 なので、x³-1はx²＋x＋1で割り切れる。

問　
(1)  のℚ上最小多項式を求めよ。（ヒント：x=と置き、どうやって√を消すか。）
(2)  i のℚ上最小多項式を求めよ。（ヒント：x = と置き、どうやってiを消すか。）
(3)  のℚ上最小多項式を求めよ。（ヒント：x = と置き、どうやってを消すか。）
(4)欠番
(5)  iのℚ上最小多項式を求めよ。
(6) ±のℚ上最小多項式を求めよ。(ここで±は複合同順とは限らない)
(7)欠番
(8) ± のℚ上最小多項式を求めよ。(ここで±は複合同順とは限らない)
　(9)欠番



問　ユークリッドの互除法を用いて、2112と627の最大公約数GCD(2112, 627)を求めよ。
　　そして、GCD(2112, 627) = p・2112 + q・627　となる整数p, q を求めよ。

前置き  x³－2 は ∈ ℂ のℚ上最小多項式である。よってℚ上既約である。
つまり、そのℚ上の(最高次の項の係数が1である)因数は、自分自身 x³－2 か1である。
　x³－2 と 3x²+2x+1 の(最高次の項の係数が1である)公約式は1のみである。
つまり、最大公約式GCD(x³－2, 3x²＋2x＋1) = 1 である（互いに素だということ）。

問　ユークリッド互除法を用いて、u(x)・( x³－2) + v(x)・(3x²+2x+1) = 1
となるℚ係数多項式u(x),v(x)を1組求めよ。

問　このことから の分母の有理化をせよ。


代数拡大の基本定理
K上代数的数αに対し, αのK上最小多項式をf(x)とし, f(x)の次数をnとする。
すると、
K(α)=K[α] = K + Kα + Kα² + ・・・+K
であり、
1, α, α², ・・・,  は, K上線形独立。
すなわち、K(α)は体K上のn次元線形空間である。
[bookmark: _Hlk171002389]証明（：暇だったら読んでみてください。)　f(x)がK係数n次多項式であり、最高次の項の係数が1なので、
f(x)=  + an-1  + an-2 + ・・・+ a₃ + a₂ + a₁x + a₀ (各ai ∊ K)
とおける。
　f(α)=0 より
　　 = - an-1           －・・・― 　　　－　　　－a₁α －a₀
　この式を利用して当てはめていけば、αのn乗以上のものは、αのn乗未満のもののK係数和に直せる。従って、
K[α] = K + Kα + Kα² + Kα³ + ・・・+ K + K + K +・・・
　　　= K + Kα + Kα² + Kα³ + ・・・+ K
である。
万が一、1, α, α², ・・・, はK上線形従属だとすると、
　ｐ0 + p1α + p2α² + ・・・ + pn-1 = 0 (少なくとも1つのpi≠0)
となるpi ∊K たちが存在することになる。
　g(x) = ｐ0 + p1 x + p2 x² + ・・・ + pn-1 と置くと、g(α)=    となる。
g(x)はx=αを代入して0になるf(x)より次数の低い（0多項式以外の）K係数多項式となり、f(x)の次数最小性に矛盾する。即ち、上のような pi ∊K たちは存在しない。
よって、1, α, α², ・・・, はK上線形　　である。
K[α]の0でない任意の要素ｍは、
ｍ = q0 + q1α + q2α² + ・・・ + qn-1 (各qi∊K、少なくとも1つのqi≠0)
と表される。
h(x)= q0 + q1 x + q2 x² + ・・・ + qn-1と置く。h(x)は高々n-1次の（0多項式ではない）多項式である。h(α)=ｍ となる。
すると、f(x) と h(x) の(最高次の項の係数が1である)公約式は1のみである。
つまり、最大公約式GCD(f(x),h(x)) = 1 である（互いに素だということ）。
そこで、ユークリッド互除法を用いて、
p(x)・f(x) + q(x)・h(x) = 1・・・※
となるK係数多項式p(x),q(x)が存在する。
※にx=αを代入すると　p(　)・f(　) + q(　)・h(　) = 1
　　　　　　　　p(α)・0 + q(α)・m= 1
故に、mの逆数  = q(α) ∊ K[α]
すなわちK[α]は体となる。
故に、環K[α]はKとαを含む最小の体となり、K(α)と一致する。　　　（証明終）


