代数学III　第１講（20230411）

複素数
i =  ・・・ 平面上に数直線を定め、原点Oを中心に1を正の向き（反時計回り）に90°回転した位置にとる。Oと1を結ぶ直線を実軸、Oとiを結ぶ直線を虚軸という。
a, b を実数としたとき、複素数α= a+bi を、1のa倍とiのb倍の原点Oを中心とした合成と捉える。
　a+bi=0 (a,bは実数)　⇒　a=b=0　　  (即ち、1とiは実数体 ℝ 上線型独立である。)
複素数αに複素数β= p+qi (但しp,q：実数)を掛けるとは、原点Oを中心として、複素数αをp倍したものと、複素数αを正の向きに90°回転してq倍したものを合成することと捉える（あるいは、αを [1] として軸を立てたとき [p+qi] に相当するものとも言えよう。）。このことで、i² = i×i = －1 が正当化される。
問　上の考えで (2+i)×(3+2i) を図示せよ。

複素数の極表示
複素数αと原点Oの距離（：大きさ）をr、実軸の正の部分となす角（：偏角）をθとする。
[bookmark: _Hlk131861896]α＝r・(cosθ+ i・sinθ) = r・・・・以下のEulerの公式より

Eulerの公式
ネピア数e =  =   = 2.718・・・
問　のマクローリン展開にx=iθを代入すると、
[bookmark: _Hlk131707281][bookmark: _Hlk131707217]　(cosθのマクローリン展開) + i・(sinθのマクローリン展開)
即ち、Eulerの公式 cosθ + i sinθ を得る。

問　Eulerの公式と指数法則を用いて、複素数の積を大きさと偏角の観点から扱おう。
α ＝ r・(cosθ+ i・sinθ) = r・ (大きさr　偏角θ
β =  s・(cosτ+ i・sinτ) = s・（大きさs　偏角τ）
　αβ＝



代数学III第2講（20230418）
問　Euler の公式から三角関数sin, cosの加法定理を導け。
γとδを角（ラジアン）とする。
指数法則より　・　である。
ここで、左辺と右辺にEulerの公式 cosθ + i sinθを適用し、実部どうし虚部どうしを比べる。
環と体
環Kとは、足引掛ができて、加法単位元0と乗法単位元1を持つ数の集合である。
[bookmark: _Hlk132389808]a,b K ⇒　a±b K,  a×b K　（加法減法乗法で閉じている）、　0, 1 K
環の例：ℤ（整数全体の集合）、ℚ（有理数全体の集合）、ℝ（実数全体の集合）、ℂ（複素数全体の集合）

[bookmark: _Hlk132389779]体Kとは、足引掛割ができて、加法単位元0と乗法単位元1を持つ数の集合である。但し0で割るのは禁則とする。
　　a,b K ⇒　a±b K,  a×b K　（加減乗で閉じている）、　0, 1 K
　　a,b K かつ b≠0　⇒　a÷b K  (除法で閉じている)
  体の例：ℚ（有理数全体の集合）、ℝ（実数全体の集合）、ℂ（複素数全体の集合）
問　（ℝ が体であることを前提にして、）ℂ が体であることを示せ。
[bookmark: _Hlk131864702]ℂ = {a+bi | a,b  ℝ} である。先ず0=0+0i∈ℂ, 1=1+0i∈ℂ は明らか。
　α = a+bi (a,b  ℝ), β = p+qi (p,q  ℝ)  ℂ について
　α＋β、α―β、α×β、α÷β（：但しβ≠0 のとき）を計算して ℂ の元であること（〇＋□iの形になること）を確かめる（即ち、ℂ は加減乗除で閉じている）。
　（除法のところで分母の実数化を行うにあたり |β|² = p²+q² ≠0が効く）

ℤを整数環、ℚを有理数体、ℝを実数体、ℂを複素数体と言う。
　 
代数学の基本定理
ℂ に係数を持つ1変数多項式f(x)は、ℂ に係数を持つ1次式の積に因数分解できる。
(証明) 複素関数論のLiouvilleの定理より、f(x)がいかなるx  ℂ に対しても値0を取らなければ、定数関数になる。
　さもなくば、あるα  ℂ に対し f(α)=0 となる。すると、因数定理より f(x) は x－α で割り切れる。即ち、f(x) = (x－α)g(x) となる ℂ に係数を持つ多項式 g(x) が存在する。g(x) に対しても同様の論法を繰り返して、証明は終わる。　　　　　　　　　□
例　x²＋１＝(x + i)・(x－i)
代数学III第3講（20230425）
塁乗根
[bookmark: _Hlk132296892]問　 が無理数であることを示せ。
[bookmark: _Hlk132308895]（蛇足） =  (a,bは自然数)と置いて矛盾を導く。ここで、右辺を既約分数（aとbが互いに素、即ちaとbの最大公約数が1）にしておくのが常道だが、両辺を2乗してから分母を払い、両辺を素因数分解したときの2の指数を比較し矛盾を導く方法もある。
問　 が無理数であることを示せ。

定理　rを2以上の自然数とする。自然数nがr乗数（自然数のr乗）でないとき、
　α =  は無理数である。
（証明）　上の問と同様。

環の拡大
[bookmark: _Hlk133940590][bookmark: _Hlk132999939]Kが環であり、Kの要素とn個の独立変数x₁,x₂,x₃,…,xn達で足引掛してできる環、即ちKに係数を持つn変数多項式f(x₁,x₂,x₃,…,xn)全体の集合をK[x₁,x₂,x₃,…,xn]と記し、K上のn変数多項式環という。
[bookmark: _Hlk133333726]例：　ℝ[x,y]  x² + 3y⁴ +  xy + 

[bookmark: _Hlk133940480]KとEが環であり、K⊂E、更にKとEで加法単位元0と乗法単位元1および＋－×の演算が共通であるとき、KをEの部分環であるという。またEをKの拡大環であるという。
[bookmark: _Hlk131509032][bookmark: _Hlk132999921][bookmark: _Hlk131509163]α₁,α₂,α₃,…,αn∈Eのとき、Kの要素とα₁,α₂,α₃,…,αn達で足引掛してできる環を、
[bookmark: _Hlk132373412][bookmark: _Hlk131509329]Kにα₁,α₂,α₃,…,αnを添加(付加）してできる環と言い、K[α₁,α₂,α₃,…,αn]と記す。
[bookmark: _Hlk131509363]即ち、K[α₁,α₂,α₃,…,αn]  = Kとα₁,α₂,α₃,…,αnを含む(E内での)最小の環
= { f(α₁,α₂,α₃,…,αn) |  f(x₁,x₂,x₃,…,xn) ∈K[x₁,x₂,x₃,…,xn]}
となる。
[bookmark: _Hlk133334215]そして K⊂K[α₁,α₂,α₃,…,αn]⊂E である。
[bookmark: _Hlk133334241]例：　ℤ[]  , , 5－3, －2, × = 
　　　ℤ ⊂ ℤ[] ⊂ ℝ

代数学III第4講（20230509）
方法  　KはEの部分環で、α₁,α₂,α₃,…,αn∈Eとする。
K ⊂ F ⊂ K[α₁,α₂,α₃,…,αn] かつ
α₁,α₂,α₃,…,αn∈Fかつ
Fが環（加減乗で閉じている）ならば、
（K[α₁,α₂,α₃,…,αn] が Kとα₁,α₂,α₃,…,αnを含む(E内での)最小の環 なので、）
F = K[α₁,α₂,α₃,…,αn] である。

[bookmark: _Hlk132308102][bookmark: _Hlk132307812]注 　ℝ ⊂ ℂ であり、ℝ はℂの部分環である。ここで i ∈ ℂ であるが、ℂ = ℝ [i] となる。
[bookmark: _Hlk133946414]（理由）　ℝ ⊂ ℂ = {a+bi | a,b  ℝ} ⊂ ℝ [i]（：ℝの要素とiで足引掛した環）かつ
　　　　　i∈ℂ　かつ
　　　　　ℂが環（加減乗で閉じている）なので。

[bookmark: _Hlk132654111][bookmark: _Hlk132307965][bookmark: _Hlk133937664]問　ℚ ⊂ ℝ であり、ℚ は ℝ の部分環である。ここで  ∈ ℝ であるが、
　ℚ [] = {a + b | a,b  ℚ } であることを示せ。
(Hint)　　F＝{a + b | a,b  ℚ }とおく。
ℚ ⊂ F ⊂ ℚ [] （ℚの要素とで足引掛した環） は明らか。
[bookmark: _Hlk133678419]　　また、 = 0 + 1・  Fである。
　　あとは、Fが環（加減乗で閉じている）であることを示せばよい。

問　ℚ ⊂ ℝ であり、ℚ は ℝ の部分環である。ここで ,  ∈ ℝ であるが、
　ℚ [, ] = {a + b + c + d | a,b,c,d  ℚ } であることを示せ。
(Hint)　　F＝{a + b + c + d | a,b,c,d  ℚ }とおく。
[bookmark: _Hlk133602143]ℚ ⊂ F ⊂ ℚ [, ] （ℚの要素とで足引掛した環）は明らか。
・・・ =  ∈ ℚ[, ]
　　また、,  Fである。
[bookmark: _Hlk134525730]　　あとは、Fが環（加減乗で閉じている）であることを示せばよい。



[bookmark: _Hlk135577411]代数学III第5講（20230516）

問　ℚ ⊂ ℝ であり、ℚ は ℝ の部分環である。ここで  ∈ ℝ であるが、
　ℚ [  ] = {a + b + c  | a,b,c  ℚ } であることを示せ。
(Hint)　　F={a + b + c  | a,b,c  ℚ } とおく。
ℚ ⊂　F　⊂ ℚ [  ] （ℚの要素と で足引掛した環）は明らか。
                                               ・・・  = ×  ∈ ℚ[]
　　また、 F である。
　　あとは、F が環（加減乗で閉じている）であることを示せばよい。


体の拡大
Kが体であり、Kの要素とn個の独立変数x₁,x₂,x₃,…,xn達で足引掛割してできる体、即ちKに係数を持つn変数有理関数q(x₁,x₂,x₃,…,xn) =  （ 但しf(x₁,x₂,x₃,…,xn)とg(x₁,x₂,x₃,…,xn)はKに係数を持つn変数多項式、≠0 ) 全体の集合をK(x₁,x₂,x₃,…,xn)と記し、K上のn変数有理関数体という。
例：　ℝ(x,y)  、勿論 ℝ[x,y] ⊂ ℝ(x,y)
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[bookmark: _Hlk133940957]KとEが体であり、K⊂E、更にKとEで加法単位元0と乗法単位元1および＋－×÷の演算が共通であるとき、KをEの部分体であるという。またEをKの拡大体であるという。
α₁,α₂,α₃,…,αn∈Eのとき、Kの要素とα₁,α₂,α₃,…,αn達で足引掛割してできる体を、
Kにα₁,α₂,α₃,…,αnを添加（付加）してできる体と言い、K(α₁,α₂,α₃,…,αn)と記す。
即ち、K(α₁,α₂,α₃,…,αn) = Kとα₁,α₂,α₃,…,αnを含む(E内での)最小の体
[bookmark: _Hlk131509969]= {|  f(x₁,x₂,x₃,…,xn)とg(x₁,x₂,x₃,…,xn)はKに係数を持つn変数多項式、g(α₁,α₂,α₃,…,αn)≠0 }
となる。
そして K⊂K(α₁,α₂,α₃,…,αn)⊂E である。
例：　ℚ()  , e, 5－3, －2, e,  (π：円周率, e：ネピア数)
　　　ℚ ⊂ ℚ[］⊂ ℚ() ⊂ ℝ

方法  　KはEの部分体で、α₁,α₂,α₃,…,αn∈Eとする。
K ⊂ F ⊂ K(α₁,α₂,α₃,…,αn) かつ
α₁,α₂,α₃,…,αn∈Fかつ
Fが体（加減乗除で閉じている）ならば、
（ K(α₁,α₂,α₃,…,αn) が Kとα₁,α₂,α₃,…,αnを含む(E内での)最小の体 なので、）
F = K(α₁,α₂,α₃,…,αn) である。
注 　ℝ ⊂ ℂ であり、ℝ はℂの部分体である。ここで i ∈ ℂ であるが、ℂ = ℝ (i) となる。
[bookmark: _Hlk133946432]（理由）ℝ ⊂ ℂ = {a+bi | a,b  ℝ} ⊂ ℝ (i)（：ℝの要素とiで足引掛割した体）かつ
　　　　　i∈ℂ　かつ ℂが加減乗除で閉じているので。

問　ℚ ⊂ ℝ であり、ℚ は ℝ の部分体である。ここで  ∈ ℝ であるが、
[bookmark: _Hlk133945643]　ℚ [] = ℚ () であることを示せ。
[bookmark: _Hlk133946264](Hint) ℚ ⊂ ℚ[] = {a + b | a,b  ℚ }⊂ ℚ ()（：ℚの要素とで足引掛割した体） まで既出および明白。　また、  ℚ[]である。
　　そして、ℚ[] ={a + b | a,b  ℚ }　が加減乗除で閉じていることを示せばよい。
　ここで ℚ[]が環（加減乗で閉じている）なのは既出なので、あとは除法で閉じていることを示すべし。即ち、a + b≠0のとき逆数  が〇＋△（〇と△は有理数）の形に直せることを示すべし。
代数学III第7講（20230530）
問　ℚ ⊂ ℝ であり、ℚ は ℝ の部分体である。ここで ,  ∈ ℝ であるが、
　 ℚ [, ] = ℚ (, ) であることを示せ。
[bookmark: _Hlk135937091](Hint)　　ℚ ⊂　ℚ [, ]={a + b + c + d | a,b,c,d  ℚ }　⊂ ℚ (, ) （：ℚの要素とで足引掛割した体）まで既出および明白。…=∈ℚ(, )
　　また、,  ℚ [, ]である。
[bookmark: _Hlk134728379]　　そして、ℚ[, ] = {a + b + c + d | a,b,c,d  ℚ }　が加減乗除で閉じていることを示せばよい。ここで ℚ[, ] が環（加減乗で閉じている）なのは既出なので、あとは除法で閉じていることを示すべし。即ち、a + b + c + d ≠0 (但しa,b,c,d  ℚ) のとき逆数  が〇＋△ + ▽ + □（〇,△,▽,□は有理数）の形に直せることを示すべし。（Hint：分母を(ℚとの式)＋(ℚとの式)・の形に直し、分母分子に、(ℚとの式)－(ℚとの式)・ を掛けてみよう。）
[bookmark: _Hlk136522010]　　注20230530(もりひろこ氏)　 分母を(a + d) + (b + c) の形に直し分母分子に (a + d)－(b + c) を掛ければよい。　

今後の課題　ℚ ⊂ ℝ であり、ℚ は ℝ の部分体である。ここで  ∈ ℝ であるが、
　ℚ [] = ℚ () であることを示せ。
[bookmark: _Hlk134727495](Hint)　　ℚ ⊂　ℚ[] = {a + b + c  | a,b,c  ℚ }　⊂ ℚ () まで既出および明白。　　　・・・  = ×  ∈ ℚ()
　　また、 ℚ[] である。
[bookmark: _Hlk134728397]　　そして、ℚ[] = {a + b + c  | a,b,c  ℚ } が加減乗除で閉じていることを示せばよい。ここで ℚ[] が環（加減乗で閉じている）なのは既出なので、あとは除法で閉じていることを示すべし。即ち、a + b + c  ≠0 (a,b,c  ℚ)のとき逆数  が〇 + △ + ▽（〇,△,▽は有理数）の形に直せることを示すべし。
  実はこれは容易ではない!
  （注20230530 (ならはらゆうた氏) エレガントな解法
公式x³+y³+z³-3xyz= (x+y+z)(x²+y²+z²－xy－yz－zx) より
 =  となり分母から
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問（前時の続き）　ℚ ⊂ ℝ であり、ℚ は ℝ の部分体である。ここで  ∈ ℝ であるが、
　ℚ [] = ℚ () であることを示せ。
（Hint）
ℚ ⊂ ℚ[] = {a + b + c  | a,b,c  ℚ } ⊂ ℚ() : ℚとを含む最小の体
　　また、 ℚ[] である。
　　そして、ℚ[] = {a + b + c  | a,b,c  ℚ } が体であることを示せばよい。ここで ℚ[] が環（加減乗で閉じている）なのは既出なので、あとは除法で閉じていることを示すべし。
即ち、ℚ[]の一般の元a + b + c  ≠0 (a,b,c  ℚ)について、逆数  が〇 + △ + ▽（〇,△,▽は有理数）の形に直せる（つまりℚ[]の元になる）ことを示すべし。
月並みに進むと、
　 = x + y + z と置き、x,y,zを求めよう。
分母を払い1,,のℚ上の１次結合と捉え係数比較を行うと、x,y,zについての連立１次方程式が立つ：
　(( x + y + z)=1
  (ax+2cy+2bz)+(bx+ay+2cz) + (cx+by+az) ＝1 + 0・ + 0・
   　を満たす有理数x,y,zが存在すればよい。
 = 
　左辺に掛かっている３行３列の行列の行列式が
D=a³+2b³+4c³-6abc
=A³+B³+C³-3ABC　（但し、A=a,B=b,C=c と置く）
=(A+B+C)(A²+B²+C²-AB-BC-CA) = (A+B+C)・((A-B)²+(B-C)²+(C-A)²)/2≠0
[bookmark: _Hlk137062717]（何故ならば、 A+B+C = a + b + c ≠0、そしてA-B=B-C=C-A=0つまり
A=B=Cとなるのは（が有理数ではないので）a=b=c=0のときであるが、
a + b + c ≠0より、起こり得ない。）
よって、クラメルの公式より。ただ１組の有理数x,y,zが定まる。
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体の有限次拡大
　K⊂F であり、KがFの部分体（FがKの拡大体）であるとする。
　FがK上のn次元線形空間になるとき、FをKのn次拡大体（有限次拡大体）であるという。( F/K は体のn次拡大であるという。)
　即ちFの要素f₁,f₂,…,fn ∊F があり、
F = Kf₁ + Kf₂ + … + Kfn = { a₁f₁+a₂f₂+…+anfn | a₁,a₂,…,an ∊ K}
であり、
f₁,f₂,…,fn がK上線形独立
（a₁f₁ + a₂f₂ + … + anfn = 0 (但しa₁,a₂,…,an ∊ K) ならば a₁=a₂=…=an=0）
であるときである。
　f₁, f₂, …, fnをこの拡大F/Kの基底(basis)という。

（注）　a∊F に対し Kf:={kf| k∊K} と定める。
集合A,B⊂F に対し A+B = {a+b | a∊A,b∊B} と定める。

問　ℚ [] / ℚ が体の2次拡大である事を示せ。
　(Hint) 環 ℚ [] が体（ ℚ () ）であること、
ℚ [] = { a・1 + b | a,b  ℚ } = ℚ・1 + ℚ・ は既知として、
あとは、1 と  が ℚ 上線形独立であることを示せばよい。
即ち、a・1 + b = 0 (但し a,b  ℚ) ならば a=b=0 である事を示せばよい。


問(1)　 ∉ ℚ [] であることを示せ。

(2)　 ℚ [, ] / ℚ [] が体の2次拡大である事を示せ。
(Hint)  環 ℚ [, ] が体（ ℚ (, ) ） であること、環 ℚ [] が体( ℚ () ) であることは既知。
ℚ [, ] = {a・1 + b + c + d | a,b,c,d  ℚ } ・・・既知とする
= ℚ・1 + ℚ・ + ℚ・ + ℚ・　
　　　　　　　= ℚ・1 + ℚ・ + (ℚ・1 + ℚ・)・　 
= ℚ []・1 + ℚ []・       ・・・ℚ [] = ℚ・1 + ℚ・ も既知
あとは、1 と  が体 ℚ [] 上線形独立であることを示せばよい。
即ち、a・1 + b・ = 0 (但し a,b  ℚ []) ならば a=b=0 である事を示せばよい。
つまり、(p + q)・1 + (r + s)・ = 0 (但し p,q.r,s  ℚ) ならば p=q=r=s=0 である事を示せばよい。
　代数学III第10講（20230627）
例題 ℚ [, ] / ℚ が体の4次拡大であり、1, , が基底である事を示せ。
（解）　ℚ [, ] = {a・1 + b + c + d | a,b,c,d  ℚ } 
= ℚ・1 + ℚ・ + ℚ・ + ℚ・は既知である。
　　　　　あとは 1, , がℚ上線形独立であることを示せばよい。
　　　つまり、a・1 +b (但し a,b.c,d  ℚ) ならば a=b=c=d=0 である事を示せばよい。
　　　a・1 +b とすると (a +b
　　　ここで、ℚ [,]/ℚ [] は体の2次拡大（基底は1,）なので、1, は
 ℚ []上線形独立である。
従って、a +b
      ここで、ℚ []/ℚ は体の2次拡大（基底は1,）なので、1, は ℚ上線形独立である。
      従って、a=b=0, c=d=0 である。　　　　　　　　　　　　　　　　　　（終わり）

（コメント）以前、ℚ [, ]={a・1 + b + c + d | a,b,c,d  ℚ } は示してあったが、この問の結果、1,, はℚ上線形独立であることが新たに示されたのである。

定理 K⊂F⊂Eであり、F/Kが体のn次拡大でありE/Fが体のm次拡大ならば、E/K は体のnm次拡大である。
[bookmark: _Hlk138422509]　拡大F/Kの基底を{f₁,f₂,…,fn}(各fi∊F)、拡大E/Fの基底を{e₁,e₂,…,em}(各ej∊E)とすると、{fi・ej たち}(i=1,2,…,n、j=1,2,…,m)(各fi・ej ∊F) が拡大E/Kの基底になる。
(証明)　拡大F/Kの基底f₁,f₂,…,fn ∊F と、拡大E/Fの基底e₁,e₂,…,em ∊E により、
　F = Kf₁ + Kf₂ + … + Kfn、　E = Fe₁ + Fe₂ + … + Fem
     f₁,f₂,…,fn がK上線形独立、e₁,e₂,…,em がF上線形独立
  となる。　すると代入より、
E = Fe₁ + Fe₂ + … + Fem 
=(Kf₁+Kf₂+…+Kfn)e₁ + (Kf₁+Kf₂+…+Kfn)e₂ + … + (Kf₁+Kf₂+…+Kfn)em
   =Kf₁e₁+Kf₂e₁+…+Kfne₁ + Kf₁e₂+Kf₂e₂+…+Kfne₂ + … + Kf₁em+Kf₂em+…+Kfnem
あとは、f₁e₁, f₂e₁,…fne₁,  f₁e₂,f₂e₂,…,fne₂,  …  , f₁em, f₂em,・・・,fnem  がK上線形独立であることを示せばよい。
[bookmark: _Hlk136611690]a1,1f₁e₁+a2,1f₂e₁+…+an,1fne₁+a1,2f₁e₂+a2,2f₂e₂+…+an,2fne₂+…+a1,mf₁em+a2,mf₂em+…+ an,mfnem=0
(但し各ai,j ∊ K)とすると、
(a1,1f₁+a2,1f₂+…+an,1fn)e₁+(a1,2f₁+a2,2f₂+…+an,2fn)e₂+…+(a1,mf₁+a2,mf₂+…+ an,mfn)em=0
ここでe₁,e₂,…,em がF上線形独立なので、
a1,1f₁+a2,1f₂+…+an,1fn =0, a1,2f₁+a2,2f₂+…+an,2fn =0, ・・・, a1,mf₁+a2,mf₂+…+ an,mfn =0
さらにf₁,f₂,…,fn がK上線形独立なので、
   a1,1 = a2,1=・・・=an,1=0, a1,2= a2,2=・・・=an,2=0, ・・・, a1,m=a2,m=・・・=an,m=0
つまり、a1,1 = a2,1=・・・=an,1  =a1,2= a2,2=・・・=an,2  ＝・・・=a1,m=a2,m=・・・=an,m=0
故にf₁e₁,f₂e₁,…,fne₁, f₁e₂,f₂e₂,…,fne₂,…, f₁em,f₂em,…,fnem ∊E はK上線形独立。
（証明終）



代数学III第11講（20230704）
体Kに係数を持つ（K係数）n次多項式f(x)が、n－1次以下のK係数多項式g(x)とh(x)の積で表されるとき（即ちf(x) = g(x)・h(x) と分解できるとき）、f(x)はK上可約な多項式と言う。
f(x)がK上可約でないとき（即ちこれ以上因数分解できないとき）K上既約であるという。
Gaussの定理
　f(x) ℤ[x] とする。f(x) がℤ上既約ならば、f(x)はℚ上既約である。　（証明略）

問　以下のℤ上の多項式を、ℚ上,ℝ上,ℂ上で因数分解せよ。
[bookmark: _Hlk138514043](1) 2x²+3x－5
(2) x²+3x+1
(3) x²－x +1
(4) x³－1
(5) x³－2
(6) x⁴+1

Kが複素数体 ℂ の部分体とする。複素数α∈ ℂ についてf(α) = 0となる（0以外の）K係数多項式f(x)が存在するとき、αはK上代数的数であるという。
こういう多項式f(x)のうち次数が最小のものをαのK上最小多項式という。即ちαを解とする次数が最小のK係数多項式のことである。
[bookmark: _Hlk139310399]定理：　α∈ ℂを体K上代数的数とする。αのK上最小多項式f(x)は、K上既約である。そして、（最高次の項の係数で割って）最高次の項の係数を1(即ちmonic)になおせば唯一つである。
証明　f(x)をn次式とする。
f(x)がK上可約だとすると、n－1次以下のK係数多項式g(x)とh(x)によりf(x) = g(x)・h(x) と分解できる。f(α)＝０より、g(α)・h(α)=0、即ちg(α)=0またはh(α)=0となる。これはαのK上最小多項式f(x)の次数最小性に反する。よってf(x)は既約である。
[bookmark: _Hlk135578223][bookmark: _Hlk135578304]αのmonicなK上最小多項式がf₁(x), f₂(x)の異なる2つあるとする。
f₁(x), f₂(x)はともに（x=αを代入して0となるもののうち）（次数が）最小（な）多項式なので次数nは等しく、monicなので、
f₁(x)－f₂(x)は次数がn未満（：n次の項は、係数が1－1＝0になり消えるので）であるが0ではない多項式となる。
f₁(α)＝0, f₂(α)＝0より、{f₁(x)－f₂(x)}x=α＝0となる。これは、f₁(x), f₂(x)がαのK上最小多項式であることに矛盾する。よってmonicなK上最小多項式は唯一である。
                       （証明終）
代数学III第12講（20230711）
Kが複素数体 ℂ の部分体とする。
定理　α∈ ℂを体K上代数的数とする。f(x)がαのK上最小多項式だとする。
g(x)がg(α) = 0となるK係数多項式であるならば、g(x)はf(x)で割り切れる。
（証明）g(x)をf(x)で割り、そのときの商をq(x)、余りをr(x)とする。
するとg(x)=f(x)q(x)+r(x)（r(x)の次数はf(x)の次数未満）
　x=αを代入すると、g(α)=f(α)q(α)+ r(α)
                      0  = 0・q(α) + r(α)
  従ってr(α)=0
ここで、もしr(x)が0多項式でなければ、r(x)はx=αを代入して0になるf(x)より次数の低い（0多項式以外の）多項式となり、f(x)の次数最小性に矛盾する。よって、r(x)=０(恒等式)である。すなわち、g(x)はf(x)で割り切れる。　　　　　　　　　　　　　（証明終）

例　ω= とする。ω∈ ℂ の最小多項式は(monicに直して) x²+x+1 である。
{x³-1}|x=ω=0 なので、x³-1はx²+x+1で割り切れる。

問　
(1)  のℚ上最小多項式を求めよ。（ヒント：x=と置き、どうやって√を消すか。）
(2)  i のℚ上最小多項式を求めよ。（ヒント：x = と置き、どうやってiを消すか。）
(3)  のℚ上最小多項式を求めよ。（ヒント：x = と置き、どうやってを消すか。）
(4)  の体ℚ[]上最小多項式を求めよ。（ヒント：を係数の中で許すのである）
(5)  iのℚ上最小多項式を求めよ。
(6) ±のℚ上最小多項式を求めよ。(ここで±は複合同順とは限らない)
(7) + の体ℚ[]上最小多項式を求めよ。（ヒント：を係数の中で許すのである）
(8) ± のℚ上最小多項式を求めよ。(ここで±は複合同順とは限らない)
(9)  + i のℝ上最小多項式を求めよ。（ヒント：∈ ℝ を係数の中で許すのである）
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ユークリッドの互除法
基本：　A÷B＝商Q・・・余R だとすると
A＝BQ＋R、最大公約数GCD(A,B) = GCD(B,R)
（注：GCD: the greatest common divisor, GCM: the greatest common measureどちらも可）
a÷b = 商q₁・・・余r₁　　    a = b q₁ + r₁　  　　∴ r1 = a－b q₁ ・・・①
b÷r1 = 商q2・・・余r2　　  b = r1 q2 + r2　　　　∴ r2 = b－r1 q2　・・・②
r1÷r2 = 商q3・・・余r3　   r1 = r2 q3 + r3　　　　∴ r3 = r1－r2 q3　・・・③
・・・・・・・・・・・・・・・・
rn-3÷rn-２ = 商qn-1・・・余rn-1  rn-3 = rn-2 qn-1 + rn-1　∴ rn-1 = rn-3－rn-2 qn-1　・・・n-1
rn-2÷rn-1 = 商qn・・・余rn  rn-2 = rn-1 qn + rn　　　　　　∴ rn = rn-2－rn-1 qn ・・・
rn-1÷rn = 商qn+1・・・余0  rn-1 = rn qn+1

b>r1>r2>r3>・・・>rn-3>rn-2>rn-1>rn ・・・≧0より、いつか余りは０になる

GCD(a, b) = GCD(b, r1) = GCD(r1, r2) = GCD(r2. r3) =
・・・=GCD(rn-3, rn-2) = GCD(rn-2, rn-1) = GCD(rn-1, rn) = rn

aとbをけっして崩さずに、
①を②に、①と②’を③に、②’と③’を④に、・・・n－2’とn－1’をに、代入すると、
rn = pa+qb (p,q : 整数)の形に表せる。
即ち、GCD(a,b) = pa+qb　(p,q : 整数)　の形に表せる。
注） r2 = b－r1 q2 = r2 = b－(a－b q₁) q2 = (－q2)a+(1+q1q2)b・・・②’
r3 = r1－r2 q3 = (a－b q₁)－((－q2)a+(1+q1q2)b) q3 = (1+q2q3)a+(－q1－q3－q1q2q3)b
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　   ・・・③’
例　15÷9=商1・・・余6   6=15－9×1・・・①
     9÷6=商1・・・余3　 3=9－6×1・・・②
     6÷3=2
[bookmark: _Hlk140584779]　　 よって、GCD(15,9)=GCD(9,6)=GCD(6,3)=3
     ①を②に放り込み、GCD(15,9) = 3 = 9－6×1
= 9－(15－9×1)×1
=(－1)×15+2×9
　　
問　2112と627の最大公約数GCD(2112, 627)を求めよ。
　　そして、GCD(2112, 627) = p・2112 + q・627　となる整数p, q を求めよ。

問  x³－2 は ∈ ℂ のℚ上最小多項式である。よってℚ上既約である。
つまり、そのℚ上の(monicな)因数は、自分自身 x³－2 か1である。
　x³－2 と x²+x+1 の(monicな)公約式は1のみである。(注：``monic’’は代表元だけ記して済ます為に課しているだけ)
つまり、最大公約式GCD(x³－2, x²+x+1) = 1 である（互いに素だということ）。
そこで、ユークリッド互除法を用いて、p(x)・( x³－2) + q(x)・(x²+x+1) = 1
となるℚ上の多項式p(x),q(x)を1組求めよ。


代数学III第14講（20230725）・第15講（20230801）

問  ユークリッド互除法を用いて、u(x)・( x³－2) + v(x)・(x²+2x+3) = 1
となるℚ上の多項式u(x),v(x)を1組求めよ。
このことから、無理数  の分母を有理化せよ。
（注：この無理数の分母は、ℚ上の多項式x²+2x+3で、x= を代入したものである。そして、のℚ上の最小多項式はx³－2である。）

代数拡大の基本定理
Kをℂの部分体とする。α∊ℂが体K上の代数的数で、f(x)がαの（monic（最高次の項の係数が1）である）K上最小多項式とする。このf(x)がn次式だとする。
すると、環K[α] = K + Kα + Kα² + Kα³ + ・・・+ K 
(1, α, α², ・・・, はK上線形独立)となる。即ち、体K上のn次元線形空間となる。
更に、環K[α]は体になる。すなわち、K[α] = K(α) となる。
（上記定理が読みづらい場合は、Kのところを有理数体ℚに直してお読みください。）

（証明）f(x)がmonicなK上n次多項式なので
f(x)=  + an-1  + an-2 + ・・・+ a₃ + a₂ + a₁x + a₀ (各ai ∊ K)
とおける。
　f(α)=0 より
　　 = - an-1           －・・・― 　　　－　　　－a₁α －a₀
　この式を利用して当てはめていけば、αのn乗以上のものは、αのn乗未満のものの（K係数和に直せる。従って、
K[α] = K + Kα + Kα² + Kα³ + ・・・+ K + K + K +・・・
　　　= K + Kα + Kα² + Kα³ + ・・・+ K
である。
万が一、1, α, α², ・・・, はK上線形従属だとすると、
　ｐ0 + p1α + p2α² + ・・・ + pn-1 = 0 (少なくとも1つのpi≠0)
となるpi ∊K たちが存在することになる。
　g(x) = ｐ0 + p1 x + p2 x² + ・・・ + pn-1 と置くと、g(α)=    となる。
g(x)はx=αを代入して0になるf(x)より次数の低い（0多項式以外の）K上の多項式となり、f(x)の次数最小性に矛盾する。即ち、上のような pi ∊K たちは存在しない。
よって、1, α, α², ・・・, はK上線形　　である。

K[α]の0でない任意の要素ｍは、
ｍ = q0 + q1α + q2α² + ・・・ + qn-1 (各qi∊K、少なくとも1つのqi≠0)
と表される。
h(x)= q0 + q1 x + q2 x² + ・・・ + qn-1と置く。h(x)は高々n-1次の（0多項式ではない）多項式である。h(α)=ｍ となる。
すると、f(x) と h(x) の(monicである)公約式は1のみである。
つまり、最大公約式GCD(f(x),h(x)) = 1 である（互いに素だということ）。
そこで、ユークリッド互除法を用いて、
p(x)・f(x) + q(x)・h(x) = 1・・・※
となるK上の多項式p(x),q(x)が存在する。
※にx=αを代入すると　p(　)・f(　) + q(　)・h(　) = 1
　　　　　　　　p(α)・0 + q(α)・m= 1
故に、 = q(α) ∊ K[α]
すなわちK[α]は体となる。
故に、環K[α]はKとαを含む最小の体となり、K(α)と一致する。　　　（証明終）

線型写像の基本定理（Review）
X,Yを体K上の線形空間（ベクトル空間）とし、F:X→YをK-線形写像とする。
このとき同型　X/Ker(F)≅Im(F)　が成立する。
（注）　FがK-線形写像であるとは、各k∈K、各x₁,x₂∈X に対し、
加法につきF(x₁+x₂)=F(x₁)+F(x₂)、
スカラー倍につきF(k x₁)=k F(x₁) をみたす
ということである。
（注）　核　Ker(F)=Kernel(F)={x∈X| F(x)=0}⊂X
 像　Im(F)=Image(F)={F(x)| x∈X}⊂Y
（注）　Aが線形空間Bの部分空間である(A⊂B)とき、
商空間B/Aとは、Bの中で加法・スカラー倍を行うにあたり、Aの要素を0とみなしたものである。


環準同型写像の基本定理
X,Yを環とし、F:X→Yを環準同型写像とする。
このとき同型　X/Ker(F)≅Im(F)　が成立する。
（注）　Fが環準同型写像であるとは、各x₁,x₂∈X に対し、
加法につきF(x₁+x₂)=F(x₁)+F(x₂)、
乗法につきF(x₁・x₂)=F(x₁)・F(x₂) をみたす
ということである。
代数拡大の基本定理（続き）
Kをℂの部分体とする。α∊ℂが体K上の代数的数で、f(x)がαの（monicである）K上最小多項式とする。
すると、同型  K[x]/(f(x)) ≅ K[α] が成立する。
（証明）環準同型写像F:K[x]→K[α]を、K[x]∋g(x)|→ g(α)∈K[α]でもって定める。
　　　（F(g(x))＝g(α) というわけである。）
　　Ker(F) ＝ {g(X)∈K[x]| F(g(x))=0} = {g(X)∈K[x]| g(α)=0}
           = K[x]f(x) ・・・αを解とする多項式は最小多項式f(x)で割り切れるので
　　　　　 =(f(x))⊂K[x]  ・・・ f(x)で生成される環K[x]内のイデアル
　　Im(F) ={F(g(x))| g(x)∈K[x]} = {g(α)| g(x)∈K[x]}=K[α]
環準同型定理 X/Ker(F)≅Im(F) より結論を得る。　　　　　　　　　　　（証明終）

解説
Kをℂの部分体とする。α,β∊ℂが体K上の代数的数で、αとβが共通のK上最小多項式f(x)をもつとき, αとβは体K上共役であるという。上の定理よりK[α] ≅ K[x]/(f(x)) ≅ K[β] なので、αとβの代数的構造は全く同じである。

問　以下のものを求めよ
(1) の体ℚ上共役
(2) i(=)の体ℝ上共役
(3) i(=)の体ℚ上共役
(4) ω=の体ℚ上共役
[bookmark: _Hlk141725397](5) 3 + 5i の体ℚ上共役
(6)  + 5i の体ℝ上共役
(7)  + 5iの体ℚ上共役


