8.4 有理式と置換 45

8.4 有理式と置換

8.4.1 交代式

定義 8.10. n 変数の有理式 $f(x_1, ..., x_n)$ が交代式であるとは、任意の互換 $\sigma = (i \ j)$ $(1 \le i < j \le n)$ について次が成立すること。

$$(\sigma f)(x_1,\ldots,x_n)=-f(x_1,\ldots,x_n).$$

交代式 $f(x_1,...,x_n)$ と $\sigma \in S_n$ について次が成立する.

- (1) σ が奇置換 \Rightarrow $(\sigma f)(x_1,\ldots,x_n) = -f(x_1,\ldots,x_n)$.
- (2) σ が偶置換 \Rightarrow $(\sigma f)(x_1,\ldots,x_n)=f(x_1,\ldots,x_n).$

例 8.13. 次の多項式は交代式である.

$$\Delta(x_1, \dots, x_n) = (x_1 - x_2)(x_1 - x_3) \cdots (x_1 - x_n)$$

$$\times (x_2 - x_3) \cdots (x_2 - x_n)$$

$$\vdots$$

$$\times (x_{n-1} - x_n)$$

$$= \prod_{1 \le i \le j \le n} (x_i - x_j).$$

これを x_1, \ldots, x_n の**差積**と言う.

定理 8.17. 有理式 $f(x_1, ..., x_n)$ が交代式であれば差積と対称式の積に表わされる. $f = \Delta F$, F は対称式.

定理 8.18. $f(x_1,\ldots,x_n)$ が A_n の置換で不変な有理式であれば、対称式と交代式の和に表わされる。

8.4.2 有理式の対称式

定理 8.19. $h(x_1,\ldots,x_n)$ を n 変数の有理式とし、h に S_n の置換を作用させてできる相異なる式を

$$h_1 = h, h_2, \ldots, h_l$$

とする。有理式 $\Phi(h_1,h_2,\ldots,h_l)$ が h_1,h_2,\ldots,h_l の対称式であれば、 x_1,x_2,\ldots,x_n の式として対称式である。

例 8.14. $h(x_1,x_2,x_3,x_4)=x_1x_2+x_3x_4$ とすると、 S_4 の置換で出来る異なる式は次の 3 個。

$$h = h_1 = x_1x_2 + x_3x_4, \ h_2 = x_1x_3 + x_2x_4, \ h_3 = x_1x_4 + x_2x_3.$$

h を変えない置換全体のなす群は

$$G = \{e, (1\ 2), (3\ 4), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 3\ 2\ 4), (1\ 4\ 2\ 3)\}.$$

 h_1, h_2, h_3 の対称式は x_1, x_2, x_3, x_4 の対称式, 特に

$$h_1 + h_2 + h_3$$
, $h_1h_2 + h_2h_3 + h_3h_1$, $h_1h_2h_3$

は x_1, x_2, x_3, x_4 の対称式である.

 x_1, x_2, x_3, x_4 が 4 次方程式 $x^4 + ax^3 + bx^2 + cx + d = 0$ の 4 根であれば, h_1, h_2, h_3 を根とする方程式

$$(T - h_1)(T - h_2)(T - h_3) = 0$$

の係数はa, b, c, dの多項式である.

8.4.3 有理式の有理式

定理 8.20. 2 個の有理式 $f(x_1,\ldots,x_n)$, $\varphi(x_1,\ldots,x_n)$ について,f を変えない S_n の置換は φ も変えないとする.

$$(\sigma f) = f \Rightarrow \sigma \varphi = \varphi.$$

このとき, φ は f の有理式に表わされる.

$$\varphi = \frac{a_m f^m + a_{m-1} f^{m-1} + \dots + a_1 f + a_0}{b_l f^l + b_{l-1} f^{l-1} + \dots + b_1 f + b_0}.$$

ここで $a_m, \ldots, a_0, b_l, \ldots, b_0$ は x_1, \ldots, x_n の対称式である.

註. 上の定理で、特に f として S_n の置換で n! 個の異なる式が得られるものを取れば、任意の n 変数有理式 φ が g の有理式として表わされる.

系 8.21. f, φ を n 変数有理式とする. f を変えない S_n の置換全体を G とする: $G = \{\sigma \in S_n \mid \sigma f = f\}$. G の置換を φ に作用させて得られる異なる式全体を $\varphi = \varphi_1, \varphi_2, \ldots, \varphi_l$ とする. このとき, $\varphi_1, \varphi_2, \ldots, \varphi_l$ の対称式は f の有理式に表わされる.

例 8.15. x_1, x_2 を方程式 $x^2 + ax + b = 0$ の 2 根とし, $f(x_1, x_2) = f_1(x_1, x_2) = x_1 - x_2$, $\varphi(x_1, x_2) = \varphi_1(x_1, x_2) = x_1$ とおく. 置換 $(1\ 2)$ で f は $f_2 = -f$ に, φ は $\varphi_2 = x_2$ に変わる.

$$F(X) = (X - f_1)(X - f_2),$$

$$G(X) = \varphi_1(X - f_2) + \varphi_2(X - f_1)$$

とすると

$$x_1 = \varphi = \frac{G(f)}{F'(X)} = \frac{-af + a^2 - 4b}{2f} = \frac{-a + f}{2}.$$